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Abstract—The Internet of Things (IoT) connects several ob-
jects within environments that dynamically change, and so
requirements may be added and changed at runtime. Therefore,
requirements may be satisfied at dynamic change. Self-adaptive
software can alter their behavior to satisfy requirements in
dynamic environments. In this perspective, the concept of self-
adaptive software is suitable for IoT environments. In this study,
a self-adaptive framework is proposed for decision making in
IoT environments at runtime. The framework includes finite-
state machine model designs and game theoretic decision-making
methods to extract efficient strategies. The framework is im-
plemented as a prototype, and experiments are performed to
evaluate runtime performance. The results demonstrate that the
proposed framework can be applied to IoT environments at
runtime.

Index Terms—Self-adaptive software, Game theory, Finite-
state machine, Nash equilibrium, Internet of Things

I. INTRODUCTION

Internet of Things (IoT) technologies are currently
widespread. IoT connects several objects within various dy-
namic environments [1]. The IoT environment includes sev-
eral requirements, and the requirements must be dynamically
satisfied at runtime. Therefore, IoT frameworks should be
able to make decisions that satisfy the requirements of IoT
environments [2]. From this perspective, self-adaptive soft-
ware may be applied within IoT frameworks. Self-adaptive
software can change their behavior or structure within chang-
ing environments at run-time [3], [4]. For this reason, self-
adaptive software is appropriated for dynamic IoT environ-
ments. However, previous studies have highlighted several
limitations of self-adaptive software. These limitations include
the requirement that models of self-adaptive software should
contain expected adaptive strategies to adapt to changes in
environmental conditions. Therefore, such models are not
suitable for IoT environments with changing components at
runtime. In addition, IoT has several requirements between
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different objectives, and an effective decision-making method
is required. In this perspective, game theory may be used for
decision making between different requirements. Game theory
is a mathematical model for decision making between different
stakeholders [5], [6]. It is applied in economics, biology, and
computer science [6]–[11]. Game theory basically helps find
optimized decisions. Therefore, game theoretical methods can
be used in IoT environments to find the optimal decision
between different requirements. In this paper, we propose a
self-adaptive framework for IoT with game theoretical strat-
egy extraction methods and finite-state machine designs. The
design of a finite-state machine is based on prior studies [12],
[13].

The remainder of this paper is organized as follows. Section
2 provides a background of self-adaptive software and game
theory, and related work that describe self-adaptive software
as a finite-state machine are also presented. In Section 3, the
proposed framework is introduced. In Section 4, the empirical
evaluation is presented. Section 5 concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Self-Adaptive Software Framework

Self-adaptive software detects environmental conditions and
changes its behavior or structure if software requirements
are violated [3]. Therefore, a self-adaptive software includes
a monitoring process to observe environmental changes, in-
cluding its own condition. In addition, self-adaptive software
analysis is related to adaptation using monitoring data. If
adaptation is needed, adaptation strategies are developed and
executed. This adaptation process is referred to as MAPE-loop
and is used in self-adaptive software and autonomic computing
[3], [4], [12]–[19].

The loop consists of four parts as follow:
• A monitoring process is responsible for collecting and

correlating data from the environment and software.
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• An analysis (detection) process is responsible for analyz-
ing adaptive symptoms by monitoring data.

• A planning (deciding) process is responsible for deter-
mining what is needed to be changed and how to change.

• An execution (acting) process is responsible for applying
an adaptation strategy.

The MAPE-loop is generally used in self-adaptive software
and autonomic computing [3]. Therefore, several self-adaptive
software studies have applied the loop [3], [4], [12]–[18], [20],
and the proposed framework also uses the MAPE-loop.

B. Finite-State Machine for Self-Adaptive Software Modelling

In this study, a finite-state machine model is used to describe
and verify self-adaptive software, and the finite-state machine
is based on previous studies [12], [13]. Lee et al proposed a
framework with finite-state machine to describe self-adaptive
software (i.e., SA-FSM). The finite-state machine is translated
as an abstracted model in equation form for runtime verifica-
tion (i.e., A-FSM). The translation process contains abstraction
algorithms that are based on state elimination. The abstracted
model is used for runtime verification within a MAPE-loop.
The framework produces reasonable experimental results and
provide guidelines for modeling self-adaptive software by a
finite-state machine. This study is modified at present study.

C. Nash Equilibrium

Nash Equilibrium was introduced by John Forbes Nash Jr
[21], and it is used to analyze the results of strategic inter-
actions among diverse decision makers. Furthermore, every
finite game has a Nash equilibrium. Therefore, if there are
several decision makers and institutions, the Nash equilibrium
can be used to make forecasts [6]. In game theory, there are
non-cooperative players who participate in a game, and they
have their own strategies for different actions. The selection of
strategies can affect the strategy of other players. Each player
strives to achieve an outcome with the largest possible payoff.
Therefore, players choose their strategy so that an outcome
with maximum payoff may be obtained.

If players are in Nash equilibrium, then any player can
select a better unilateral strategy. In Nash equilibrium, no
one can receive a better payoff by changing strategies, and
each strategy leads to the best outcome. Therefore, no players
change their strategies, and strategies are solidified [5], [21].
In the proposed approach, Nash equilibrium is used to extract
a strategy for adapting to an IoT environment. Details on the
use of Nash equilibrium are discussed in Section 3.C.

III. PROPOSED APPROACH

A self-adaptive software framework is proposed for design-
ing an IoT environment using finite-state machine and by
extracting an adaptive strategy using Nash equilibrium. Section
3.A presents an overview of the proposed method. Section 3.B
presents the modelling of finite-state machine based on SA-
FSM [12], [13]. Section 3.C explains the method for extracting
a strategy using Nash equilibrium.

Fig. 1. Overview of proposed framework

A. Overview

In this study, a self-adaptive software framework is proposed
for an IoT environment, and the framework includes two
phases: modeling and runtime. The modeling phase is respon-
sible for extracting finite-state machine to describe the self-
adaptive software. The runtime phase includes the MAPE-loop
and is responsible for adaptation at runtime. Fig. 1 presents
an overview of the proposed framework.

As mentioned earlier, the modeling phase is responsible
for building a model of an IoT environment as finite-state
machine. The modeling phase first collects available IoT
devices and prepares the model building process. Collected
IoT devices are classified into two types: sensor device or act
device. The classified devices are categorized based on their
ability and related requirements. Details on the classification of
devices are presented in Section 3.B.1. After classification, a
finite-state machine is constructed using collected IoT devices.
The finite-state machine model is constructed by action and
relations of collected devices. Details on modeling a finite-
state machine for IoT is described in Section 3.B.2. The final
process of the modeling phase is the abstracting process. The
abstracting process abstracts a designed finite-state machine
using a state elimination algorithm [22]. Details on the ab-
straction algorithms are described in previous studies [12],
[13]. Note that the abstracting process is only operated once
if there is no change in the design of the finite-state machine.
Finally, the abstracted finite-state machine is transferred to the
runtime phase. The designed and abstracted models are used
for evaluating the environmental condition of the software in
each cycle of the MAPE-loop.

The runtime phase is responsible for adaptation at run-
time. As we mentioned earlier, the runtime phase includes
the MAPE-loop. The monitoring process is responsible for
collecting data that describes the environment and internal
changes. The environmental data is collected through sensor-
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devices. In addition, the monitoring process searches for any
new device that has been potentially added in the finite-
state machine. Remodeling is requested if a new device is
detected. If the modelling request is accepted, the modelling
phase is executed and remodeling is performed with the new
device. After the monitoring process, the analysis process is
executed. The analysis process is responsible for analyzing
symptoms that are related to the adaptation situation. In the
proposed approach, analysis is performed only through calcu-
lating equations (i.e., A-FSM [12], [13]). Using the calculating
equations, the analysis process determines whether the self-
adaptive software has satisfied requirements and detects the
conditions for adaptation. Analysis results are transferred to
the planning process. The planning process is responsible for
making adaptation strategies that must be changed and for
determining how to affect those changes. In this study, decision
making using Nash equilibrium is proposed, and the method
can make strategies for adapting to environmental changes.
Details on strategy extraction are described in Section 3.C. The
last process of the runtime phase involves the execution that
is responsible for activating the adaptive strategies. Therefore,
if the planning process transferred the adaptive strategy, the
execution process activates the adaptive strategy for adapta-
tion. Subsequently, the monitoring process is executed, and
the MAPE-loop continues.

B. Finite-State Machine Modeling for Self-Adaptive Software
in an IoT Environment

We classified IoT devices as sensor-devices and act-devices
for modelling IoT-based self-adaptive software. In this section,
the classification of IoT-devices is presented, and the definition
of finite-state machine modelling using the classification of
IoT devices is described.

1) IoT Device Classification: There can be diverse devices
in an IoT environment (light sensor, humidity sensor, light
controller, speaker, humidifier, etc.). The devices can be clas-
sified as various categories. However, only two types of IoT
devices are used for finite-state machine modelling. One is the
sensor-device and the other is the act-device

• Sensor-device is used to sense environmental changes.
Therefore, it should be embedded in at least one readable
sensor device (light sensor, humidity sensor, temperature
sensor, etc.) In addition, it is assumed that sensor-devices
recognize which requirement is related to sensed data.

• Act-device is used to change the environment. Therefore,
an act-device should be embedded in at least one physical
device (LED, servo motor, fan, etc.) In addition, it is as-
sumed that the act-device recognizes which requirements
are related to its operation.

2) Design of Finite-State Machine for IoT: In this study,
a finite-state machine is used to model self-adaptive software
for IoT, and the finite-state machine is based on SA-FSM [12],
[13]. However, SA-FSM is modified for IoT, and it is a tuple
(S, , s0, AP, L), where

• S is a set of states.

• States are classified into eight types
{Ssensor, Sreq, Ssat, Sdis, Sact, Sadapt, Sinc, Sdec} ⊆ S.

• Sdis, Ssat, Sadapt are end states.
• →⊆ S × S is the transition relation and it is classified

as eleven types {s0 × Ssensor, Ssensor × Sdis, Ssensor ×
Sreq, Sreq × Ssat, Sreq × Sact, Sact × Sdis, Sact ×
Sinc, Sact × Sdec, Sinc × Sadapt, Sdec × Sadapt, Sadapt ×
Ssensor}.

• s0 is an initial state.
• AP is a set of atomic propositions.
• L: S → 2AP is a labeling function (2AP denotes the

power set of AP).

As represented by the tuple definition, the proposed finite
state machine consists of nine states and eleven transitions
types. The state set and related transitions are given as follows.

• Initial state (s0) is an initial state.
• Sensor-device state (Ssensor)is the set of sensor-device

related states. In this state, sensor-devices must be related
at least once. If a readable sensor device is available, it
satisfies a requirement state (i.e., Ssensor × Sreq), but it
is connected to a dissatisfied state (i.e., Ssensor × Sdis)
if there is no related sensor-device.

• Requirement state (Sreq)) is the set of states that verify
requirement satisfaction. A satisfied state is reached if the
checked requirement is satisfied (i.e., Sreq ×Ssat), or an
adaptive state is reached if the requirement is not satisfied
(i.e., Sreq × Sadapt).

• Satisfied state (Ssat) is the set of end states in which the
software requirements are satisfied.

• Dissatisfied state (Sdis)) is the set of end states in which
the software requirements are not satisfied. If the finite-
state machine has no readable device (i.e., Ssensor×Sdis)
or no possible adaptive action (i.e., Sact×Sdis), the finite-
state machine model reaches this state.

• Act state (Sact) is the set of states that check for actable
devices. If there are no actable devices, a dissatisfied
state (i.e., Sact × Sdis) is reached, or if there are actable
devices, an increase or decrease state (i.e., Sact × Sdis

and Sact × Sinc) is reached.
• Increase state (Sinc) and decrease state (Sdec) are the

set of act-device related states. In these states, at least
one actable device is related. If the finite-state machine
reaches such states, related act-devices are operated. The
state then reaches an adaptive state (i.e., Sinc × Sadapt,
Sdec × Sadapt).

• Adapt state (Sadapt) is one of the end state sets, which
denotes possible adaptive activities. Therefore, if the
finite-state machine reaches this state, it implies that
the self-adaptive software must adapt, and there are
several adaptive strategies. In addition, this state satisfies
related requirements for the sensor-device state to recheck
requirement satisfaction (i.e., Sadapt × Ssensor).

In the proposed approach, reachable paths are extracted to
reach end states (Ssat, Sdis, and Sadapt). In addition, reachable
paths are calculated at each MAPE-loop cycle.
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Fig. 2. Relationship of IoT-FSM state types

In addition, reachable paths are calculated at each MAPE-
loop to verify requirement satisfaction. Fig. 2 presents a
graphical definition of the proposed finite-state machine. As
shown in Fig. 2, most of the transition is matched one-on-
one. However, there are some transitions that do not experience
one-on-one matching, and the reason is described below. Initial
state can relate to multiple Ssensor states, which implies that
an initial state can be reaches several requirement states.
In addition, an Sact state can be related to multiple Sinc

and Sdec states because it is possible to have multiple act-
devices in a single requirement. For example, if a requirement
is illumination, there are several possible act-devices that
can exist (LED, natural light etc.). Furthermore, Sinc and
Sdec states can be connected to multiple Sadapt because the
operation of an act-device can affect several requirements. For
example, if an act-device can control windows, it is possible
to affect multiple requirements (light, temperature, intensity of
dust, etc.).

C. Game Theoretic Decision Making

This section describes how Nash equilibrium is used for
strategy extraction from finite-state machine modelling. As
described before, an act-device can perform physical acts,
and the act-device can affect several requirements. In other
words, a requirement can have several act-devices and the
related act-devices can affect other requirements. Therefore,
act-devices can be operated to satisfy requirements, and the
operation of an act-device can affect several requirements. In
addition, if requirements are related to overlapped act-devices,
it is possible that an act-device adversely affects different
requirements. In this case, one requirement is satisfied, but the
other is not. Therefore, the operation of strategies must ensure
that act-devices are operated effectively to satisfy multiple
requirements. In this regard, requirements can be considered

a player, and an act-device can be considered the strategy of
the player. The Nash equilibrium for IoT is described below:

Let a player be a requirement, and let (S, f) be a game with
n requirements, where

• S = S1 × S2 × · · · × Sn is a strategy set of profile.
• Requirement i ∈ {1, · · · , n}.
• f(x) = {f1(x), · · · , fn(x)} is the payoff function.
• A payoff function is evaluated at x ∈ S.
• xi is an act-device profile of requirement i.
• x−i is an act-device profile of the other requirements.
• Requirement i operates act-device xi resulting in strategy

profile x = (x1 · · ·xn); then, requirement i obtains
payoff fi(x).

• x∗ ∈ S is a Nash equilibrium for IoT when ∀i, xi ∈ Si :
fi(x

∗
i , x

∗
−i) ≥ fi(xi, x∗−i).

• x∗ is the operation candidate at runtime, and
• A strategy with the highest Nash equilibrium value among

requirements is selected and implemented.

Formally, if players (requirements) reach Nash equilibrium,
they cannot choose a new strategy because no one can re-
ceive better payoffs by selecting a new strategy. However,
Nash equilibrium in the proposed model indicates candidate
operations because the Nash equilibrium denotes that there
are strategies that can satisfy multiple requirements. However,
the proposed model is required as a method to evaluate and
select the most effective strategy, and the method is described
in Section 3.D.

D. Strategy Evaluation

As mentioned earlier, the proposed Nash equilibrium model
denotes candidate strategies in an IoT environment. However,
it is possible that there are multiple candidate strategies. In
this case, strategies should be evaluated for the selection of an
optimal strategy. Therefore, a method that evaluates strategies
(Nash equilibrium) is proposed, and it is called a strategy
score (SS). There are three considerable conditions and they
are described below:

• The number of satisfied requirements (SR) is the num-
ber of requirements that may be satisfied by strategy
execution. If an adaptation strategy satisfies multiple
requirements, it is more efficient than an adaptive strategy
that satisfies less requirements.

• The number of related requirements (RR) is the number
of requirements that may be affected by the execution of
a strategy. For example, if a strategy opens the windows
for adjusting indoor brightness, it affects humidity, dust
density, and temperature. In this case, requirements for
humidity, dust density, and temperature are RR. Having
fewer RR is efficient.

• The number of act devices (AD) is the number of
act-devices that are executed by an adaptation strategy.
Smaller is more efficient.

Equation 1 presents the calculation of SS using SR, RR,
and AD.
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SS = α

{
log

(
SR+ 1

RR+ 1
+ 1

)}
+ β

{
log

(
1

AD + 1
+ 1

)}
(1)

The equation includes the sum of two terms: requirement
and act-device. The first term (i.e.,

{
log
(

SR+1
RR+1 + 1

)}
) is the

related requirement, and so SR and RR are used for the term.
As we mentioned earlier, it is efficient when a strategy satisfies
several requirements (i.e., large value of SR), and when a
strategy affects few requirements (i.e., small value of RR).
Therefore, SR is divided by RR, and assumes a logarithmic
function for normalization. 1 is added to prevent a negative
infinity output. The second term (i.e.,

{
log
(

1
AD+1 + 1

)}
)

is related to act-devices. If a strategy can satisfy the same
requirements, a lower AD value is more efficient. Therefore,
a reciprocal number of AD is used, and 1 is added to prevent a
negative infinity output. The terms α and β are mediators used
for adjusting the power of each term. The equation denotes the
strategy score of a strategy within the planning process of the
MAPE-loop.

IV. EXPERIMENT

A prototype of the proposed framework using JAVA 1.8.0
was implemented on an Intel Core i5-4670 CPU (3.4 GHz) PC
with 16 GB RAM memory. The purpose of the experiment was
to evaluate the performance of the proposed framework in var-
ious environments. Random generation of IoT environments
was conducted using different numbers of act-devices and
requirements. A requirement had at least one sensor-device
and act-device, and the remaining act-devices were randomly
assigned to requirements. In addition, environment values (i.e.,
sensed data) were randomly varied and iterated 100 times
for each experiment. Three factors were measured: abstracting
time, analysis time, and planning time.

The first experiment involved ten fixed requirements and
variable act-devices. Fig. 3 shows the experimental results.
Fig. 3 shows the results obtained for increasing numbers of act-
devices. Naturally, the method required more time for a larger
number of act-devices. However, the maximum average time
for abstracting IoT-FSM was less than 1.5 ms, and the analysis
time less than 6 ms with 50 act-devices. Particularly, planning
time for extracting strategies was higher than other method,
but less than 300 ms even with 50 active devices. In addition,
loop time (the sum of analysis and planning time) was less than
305 ms with 50 act-devices and ten requirements. Monitoring
and executing time were ignored because the prototype neither
read real sensor values nor operated real physical devices.
Nevertheless, it was assumed that every factor was calculated
within reasonable time.

The second experiment was conducted using 40 act-devices
and variable requirements. Fig. 4 shows the experimental
results. As in the previous experiment, the abstracting process
required more time when the number of requirements was
increased. However, the analysis and the planning processes
time shows a tendency to decrease after rising. The reason

Fig. 3. Result with fixed requirements and increasing act- devices.

for this is that the interconnections of the requirements were
more complicated. To analyze the IoT-FSM, the IoT-FSM is
abstracted to an equation (See Sections 2.B and 3.A). The
abstracted equation is complicated when the interconnection
of requirements from the IoT-FSM is complicated. In addi-
tion, to extract Nash equilibrium, the possible actions for a
requirement are compared with possible actions for other re-
quirements. By contrast, extracting Nash equilibrium requires
less time when the interconnections of the requirements are
not complicated (i.e., the result of 2 and 30 requirements in
Fig. 4). Therefore, the results of the second experiment show
that analysis and the planning time are affected by the com-
plexity rather than the number of requirements. Nevertheless,
the second experiment also shows that the loop-time of the
proposed approach is reasonable even when the requirement
interconnections are complicated.

V. CONCLUSION
An IoT framework includes several requirements for accom-

plishing different objectives within changing environments,
and the requirements should be dynamically satisfied at run-
time. To solve this problem, a self-adaptive framework with
strategy extraction in an IoT environment at runtime was
proposed. The proposed framework consists of two phases:
modelling and runtime. The modelling phase is responsible
for searching available IoT devices and building a system
model. To build a system model, a finite-state machine was
proposed. After the modelling process, the abstracting process
was performed to abstract the built model in equation form
using state elimination algorithm. The abstracted results are
transferred to a runtime phase. The runtime phase consists
of an MAPE-loop. In the monitoring part, the environment
date is obtained from available sensor-devices, and the data
is transferred for the analysis process. The analysis pro-
cess calculates equations that are extracted in the modelling
phase and verifies requirements satisfaction at runtime. In the
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Fig. 4. Result with fixed act-devices and increasing requirements.

planning process, adaptive strategies are extracted using the
proposed Nash equilibrium. The strategies are evaluated in the
planning process, and the most efficient strategy is executed
in the execution process. In this study, we demonstrate the
suitability of the proposed framework. The results of the
experiments demonstrate that the proposed extracting strategy
can be applied in runtime. In this study, the suitability of the
proposed framework was demonstrated by experiments that
illustrated that the proposed extraction strategy can be applied
at runtime, yielding reasonable results in terms of computation
time.

In future work, optimization of the proposed method will
be considered, particularly the planning process, for extension
to mobile computing environments. In addition, the proposed
framework should be applied in a real physical environment.
Therefore, we will implement a physical IoT environment [23],
[24] and appliy the proposed framework.
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